Symmetry and the Singular Point Analysis for Ordinary Differential Equations
نویسندگان
چکیده
We show a direct relation between the singular point analysis and the symmetry for ordinary differential equations. It is proved that a system with a meromorphic solution allows Laurent solutions depending on m arbitrary parameters if it has m independent symmetries, regardless of the existence of single-valued first integrals. Applying the result to Hamiltonian systems, we show a pairing property and introduce a new definition of integrability as a synthesis of symmetries and first integrals. Further we deal with integrable Hamiltonian systems whose first integrals are in involution and discuss a relation between their symmetries and infinitely multi-valued first integrals yielded by Liouville's quadrature.
منابع مشابه
Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملINVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.
متن کامل0 60 20 57 v 1 2 4 Fe b 20 06 Difference schemes with point symmetries and their numerical tests
Symmetry preserving difference schemes approximating second and third order ordinary differential equations are presented. They have the same three or four-dimensional symmetry groups as the original differential equations. The new difference schemes are tested as numerical methods. The obtained numerical solutions are shown to be much more accurate than those obtained by standard methods witho...
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کامل